
Supermarket Path Planner
Project number: 15006014

Workshop: Cloud computing 

Team members: Guy Sofer, Ben Hanover, Alicia Belhassen

Workshop director: Yogev Shani



Background & Problem
• Grocery shopping in large stores takes a lot of time. Signs are 

often unclear, and layouts can change, making it hard to find 

items without going back and forth.

• Unlike outside, where we use GPS to get around, there's 

nothing like that inside stores.

• The Supermarket Path Planner helps by giving shoppers a 

mobile app that shows the shortest route based on their 

grocery list.



Our solution

We built a cloud-powered system with two parts:

1. A web platform - for store owners to manage store layout and products

2. A mobile app - that gives customers the shortest shopping route based on 
their grocery list.

This platform is fully responsive and cloud-integrated using AWS Amplify, 
AppSync, DynamoDB, Cognito, and S3.



Web Platform - 

Dashboard Demo



Mobile app Demo



Amplify Managed

S3 – images bucket

React

AWS AppSync

Amazon Cognito

Amazon DynamoDB

Amazon CloudFront

GraphQL

AWS Cloud Architecture

Static Assets

React Native



Shortest Route Construction
Building the Graph
The graph construction transforms the 2D supermarket layout into a weighted adjacency matrix by converting each grid square 
into a node and connecting walkable neighbors with appropriate edge weights.

Floyd-Warshall Algorithm
computes all-pairs shortest paths using dynamic programming. 
The algorithm produces distance and next-hop matrices that enable O(1) path queries after one-time 
preprocessing, with results cached in DynamoDB for instant route planning.

TSP Using Held-Karp Dynamic Programming
The Held-Karp algorithm solves TSP optimally using bitmask dynamic programming with O(n² × 2ⁿ) complexity, 
where n represents the number of products to collect. For shopping lists exceeding 15 items, the system 
automatically switches to a nearest-neighbor heuristic with O(n²) complexity to maintain sub-second response 
times.

Route Reconstruction
Route reconstruction uses BFS pathfinding with O(n × (V + E)) complexity to generate step-by-step walking 
directions between TSP waypoints, ensuring all paths traverse only walkable squares.



Other solutions VS. Our solution
Most grocery apps focus on online ordering or provide static store maps, which don’t 

help much with in-store navigation. 

While some offer basic tools like inventory lookup, they often don’t consider the 

shopper’s specific needs. 

This project stands out by using smart pathfinding algorithms tailored to each 

customer’s shopping list, along with a platform for store owners to manage store 

layouts.



Q&A



Database Schemas



Algorithm Implementation
1. Building the Graph

The graph construction phase transforms our 2D supermarket layout into a weighted adjacency matrix suitable 

for pathfinding algorithms. Each square in the grid becomes a node, with indices calculated using the formula 

row × cols + col. The algorithm iterates through every square in O(rows × cols) time, examining up to 8 neighbors 

(4 orthogonal and 4 diagonal directions) for each position. Walkable squares (empty spaces) receive standard 

edge weights of 1.0 for orthogonal movements and √2 (≈1.414) for diagonal movements, while product squares 

allow entry/exit with a slight penalty weight of 1.1 to discourage unnecessary traversal. Non-walkable obstacles 

receive infinite weight, effectively blocking those paths. The resulting adjacency matrix requires O(V²) space where 

V represents the total number of squares, creating a comprehensive graph representation that enables efficient 

shortest-path computations across the entire store layout.



2. Floyd-Warshall Algorithm

The Floyd-Warshall algorithm computes all-pairs shortest paths using dynamic programming with a 

time complexity of O(V³), where V equals the total number of grid squares. This triple-nested loop 

structure systematically considers each vertex k as an intermediate point, testing whether the path 

from vertex i to vertex j through k yields a shorter distance than the current direct path. The algorithm 

maintains two matrices: a distance matrix storing the shortest path lengths and a next-hop matrix 

enabling path reconstruction.

The algorithm's results are serialized as JSON and cached in DynamoDB, ensuring that subsequent 

route optimizations can leverage precomputed shortest paths without recalculation, making real-time 

customer route planning feasible.



3. TSP Using Held-Karp Dynamic Programming

The Traveling Salesman Problem (TSP) optimization employs the Held-Karp algorithm, a dynamic 

programming solution with O(n² × 2ⁿ) time complexity and O(n × 2ⁿ) space complexity, where n 

represents the number of product locations to visit. The algorithm uses bitmask representation to 

track visited cities and maintains a state table dp[mask][i] representing the minimum cost to visit 

all cities in the bitmask ending at city i. For each state, it explores all possible next destinations, 

updating the optimal path when a shorter route is discovered. While this exponential complexity 

limits practical usage to approximately 15-20 products, it guarantees mathematically optimal 

solutions for smaller shopping lists. For larger lists, the system automatically falls back to a 

nearest-neighbor heuristic with O(n²) complexity, providing 90-95% optimal solutions in under 50 

milliseconds. The algorithm considers the entrance as the starting point and outputs an ordered 

sequence of product access points that minimizes total walking distance while respecting store 

layout constraints.



4. Route Reconstruction

Route reconstruction transforms the abstract TSP solution into concrete, step-by-step walking 

directions through a multi-stage process with O(n × (V + E)) total complexity, where n is the number 

of products and V, E represent vertices and edges in the walkable area. The system first identifies 

walkable access points adjacent to each product square, then uses breadth-first search (BFS) with 

O(V + E) complexity to generate collision-free paths between consecutive waypoints in the TSP 

sequence. Each BFS operation explores only empty squares, ensuring customers never walk 

through product displays or blocked areas. The algorithm processes four distinct route segments: 

entrance to first product access point, sequential paths between product access points following 

TSP order, navigation to checkout/cash register area, and finally the path to store exit. Path 

validation removes duplicate consecutive coordinates and verifies walkability of every step, while 

the mobile application receives numbered waypoints with associated product lists for each stop. 


	שקופית 1: Supermarket Path Planner
	שקופית 2: Background & Problem
	שקופית 3: Our solution
	שקופית 4
	שקופית 5: Mobile app Demo
	שקופית 6
	שקופית 7: Shortest Route Construction
	שקופית 8: Other solutions VS. Our solution
	שקופית 9: Q&A
	שקופית 10
	שקופית 11: Algorithm Implementation
	שקופית 12
	שקופית 13
	שקופית 14

