E Supermarket Path Planner

Project number: 15006014
Workshop: Cloud computing

Team members: Guy Sofer, Ben Hanover, Alicia Belhassen

Workshop director: Yogev Shani



Background & Problem

* Grocery shopping in large stores takes a lot of time. Signs are
often unclear, and layouts can change, making it hard to find

items without going back and forth.

* Unlike outside, where we use GPS to get around, there's

nothing like that inside stores.

* The Supermarket Path Planner helps by giving shoppers a
mobile app that shows the shortest route based on their

grocery list.




Our solution

2y We built a cloud-powered system with two parts:

1. Aweb platform - for store owners to manage store layout and products

2. A mobile app - that gives customers the shortest shopping route based on
their grocery list.

o This platform is fully responsive and cloud-integrated using AWS Amplify,
AppSync, DynamoDB, Cognito, and S3.



Web Platform -

Dashboard Demo



Mobile app Demo



AWS Cloud Architecture

SN—"

A\\ Amplify Managed

E ] GraphQL Amazon DynamoDB
React S @

>
AWS AppSync E

S3 — images bucket

n
»
N

\ 4

]

React Native

\ 4

Amazon CloudFront Static Assets




Shortest Route Construction

Building the Graph
The graph construction transforms the 2D supermarket layout into a weighted adjacency matrix by converting each grid square
into a node and connecting walkable neighbors with appropriate edge weights.

Floyd-Warshall Algorithm

computes all-pairs shortest paths using dynamic programming.

The algorithm produces distance and next-hop matrices that enable O(1) path queries after one-time
preprocessing, with results cached in DynamoDB for instant route planning.

TSP Using Held-Karp Dynamic Programming

The Held-Karp algorithm solves TSP optimally using bitmask dynamic programming with O(n” x 2N) complexity,
where n represents the number of products to collect. For shopping lists exceeding 15 items, the system
automatically switches to a nearest-neighbor heuristic with O(n?) complexity to maintain sub-second response
times.

Route Reconstruction
Route reconstruction uses BFS pathfinding with O(n x (V + E)) complexity to generate step-by-step walking
directions between TSP waypoints, ensuring all paths traverse only walkable squares.



Other solutions VS. Our solution

Most grocery apps focus on online ordering or provide static store maps, which don’t

help much with in-store navigation.

While some offer basic tools like inventory lookup, they often don’t consider the

shopper’s specific needs.

This project stands out by using smart pathfinding algorithms tailored to each
customer’s shopping list, along with a platform for store owners to manage store

layouts.



Q&A



id

title

price

category

image

supermarket|D

Database Schemas

ID (Primary Key)

String

Float

String

String (53 Path)

Foreign Key

owner

name

address

layout

pathData

Supermarket

ID (Primary Key)

String (Required)

String

String

JSON (Grid Data)

JSON (Floyd-Warshall)

name

owner

product|Ds

createdAt

completedAt

ID (Primary Key)

String

String

JSON Array

DateTime

DateTime



Algorithm Implementation

1. Building the Graph

The graph construction phase transforms our 2D supermarket layout into a weighted adjacency matrix suitable
for pathfinding algorithms. Each square in the grid becomes a node, with indices calculated using the formula
row x cols + col. The algorithm iterates through every square in O(rows x cols) time, examining up to 8 neighbors
(4 orthogonal and 4 diagonal directions) for each position. Walkable squares (empty spaces) receive standard
edge weights of 1.0 for orthogonal movements and v 2 (21.414) for diagonal movements, while product squares
allow entry/exit with a slight penalty weight of 1.1 to discourage unnecessary traversal. Non-walkable obstacles
receive infinite weight, effectively blocking those paths. The resulting adjacency matrix requires O(V?) space where
V represents the total number of squares, creating a comprehensive graph representation that enables efficient

shortest-path computations across the entire store layout.



2. Floyd-Warshall Algorithm

The Floyd-Warshall algorithm computes all-pairs shortest paths using dynamic programming with a
time complexity of O(VS), where V equals the total number of grid squares. This triple-nested loop
structure systematically considers each vertex k as an intermediate point, testing whether the path
from vertex i to vertex j through k yields a shorter distance than the current direct path. The algorithm
maintains two matrices: a distance matrix storing the shortest path lengths and a next-hop matrix
enabling path reconstruction.

The algorithm's results are serialized as JSON and cached in DynamoDB, ensuring that subsequent

route optimizations can leverage precomputed shortest paths without recalculation, making real-time

customer route planning feasible.



3. TSP Using Held-Karp Dynamic Programming

The Traveling Salesman Problem (TSP) optimization employs the Held-Karp algorithm, a dynamic
programming solution with O(n” x 2") time complexity and O(n x 2M) space complexity, where n
represents the number of product locations to visit. The algorithm uses bitmask representation to
track visited cities and maintains a state table dp[mask][i] representing the minimum cost to visit
all cities in the bitmask ending at city i. For each state, it explores all possible next destinations,
updating the optimal path when a shorter route is discovered. While this exponential complexity
limits practical usage to approximately 15-20 products, it guarantees mathematically optimal
solutions for smaller shopping lists. For larger lists, the system automatically falls back to a
nearest-neighbor heuristic with O(n?) complexity, providing 90-95% optimal solutions in under 50
milliseconds. The algorithm considers the entrance as the starting point and outputs an ordered
sequence of product access points that minimizes total walking distance while respecting store

layout constraints.



4. Route Reconstruction

Route reconstruction transforms the abstract TSP solution into concrete, step-by-step walking
directions through a multi-stage process with O(n x (V + E)) total complexity, where n is the number
of products and V, E represent vertices and edges in the walkable area. The system first identifies
walkable access points adjacent to each product square, then uses breadth-first search (BFS) with
O(V + E) complexity to generate collision-free paths between consecutive waypoints in the TSP
sequence. Each BFS operation explores only empty squares, ensuring customers never walk
through product displays or blocked areas. The algorithm processes four distinct route segments:
entrance to first product access point, sequential paths between product access points following
TSP order, navigation to checkout/cash register area, and finally the path to store exit. Path
validation removes duplicate consecutive coordinates and verifies walkability of every step, while

the mobile application receives numbered waypoints with associated product lists for each stop.



	שקופית 1: Supermarket Path Planner
	שקופית 2: Background & Problem
	שקופית 3: Our solution
	שקופית 4
	שקופית 5: Mobile app Demo
	שקופית 6
	שקופית 7: Shortest Route Construction
	שקופית 8: Other solutions VS. Our solution
	שקופית 9: Q&A
	שקופית 10
	שקופית 11: Algorithm Implementation
	שקופית 12
	שקופית 13
	שקופית 14

