

StyleMate: High Level Design

Team: StyleMate
Members: Stav Duck, Tal Dayan

Many people struggle with putting together stylish and appropriate daily outfits for various
occasions. This challenge often leads to frustration, wasted time, and missed opportunities to
make a good impression or feel confident.​
We are developing an intuitive app that helps users quickly choose the perfect outfit based on
the weather, occasion, and personal style preferences.​

1.​ Main Components Diagram

The following diagram outlines the components planned for implementation in
our application, providing a high-level overview of the connections and
technologies involved.

​

1.1 App UI:
The user interface of the application will serve as the primary interaction point for users,
providing access to various features and functionalities. It is planned to be implemented
using React, The UI will be designed to ensure a seamless and intuitive user
experience, incorporating modern design principles and best practices.

1.2 Back End for App:
The back end will act as the core of the application, handling business logic,
authentication, and data processing. It will listen for requests from the UI via a RESTful.​
The authentication system will include a sign-up and login flow, where users can register
and authenticate using their credentials.

1.3 Users Data Base:
The Users Database will be a SQL-based relational database responsible for securely
storing and managing user information.​
The database will be managed using a relational database management system
(RDBMS). We’re using PostgreSQL, ensuring data integrity, scalability, and efficient
querying.

1.4 Message Broker:
The Message Broker will act as an intermediary for asynchronous communication
between different services in the application. Instead of direct service-to-service
communication, the message broker will decouple components, ensuring better
scalability, fault tolerance, and reliability. We are using RabbitMQ as the Advanced
Message Queuing Protocol (AMQP).

1.5 Wardrobe Manager:
The Wardrobe Manager will serve as a core service responsible for storing, organizing,
and managing users' clothing items. It will allow users to add, update, and delete
clothing items while also tracking their condition​
To automate clothing categorization, the Wardrobe Manager will use the Gemini AI
model for processing the images of the clothes and labeling them accordingly and store
the results inside the DB.​
By implementing the Wardrobe Manager, the application will offer an intelligent and
organized way for users to manage their clothing items efficiently.

1.6 Outfit Generator:
The Outfit Generator will be a smart service that creates personalized outfit
recommendations for users based on the clothing items available in their Wardrobe
Database. It will use customizable logic and Gemini AI techniques to generate outfits
that match the user's preferences, weather conditions, and specific occasions.​
The Outfit Generator will enhance the user experience by providing personalized,
weather-aware, and event-specific outfit recommendations, making daily clothing
choices effortless and efficient.

1.7 Wardrobe Data Base:
The Wardrobe Database will serve as a NoSQL storage solution for managing all
clothing-related data. It will store metadata extracted from user-uploaded images and
manual inputs, enabling efficient retrieval and outfit generation. The database is
implemented using MongoDB, a document-oriented database, which provides flexibility
in handling unstructured and semi-structured data.

2.​ Data Model:

The following diagram illustrates the relationship between the User Database
Schema and the Wardrobe Database Schema. This design ensures that each
user's personal wardrobe data remains distinct and easily accessible

2.1 User Database Schema

●​ Every user will have a unique user ID (userId), which serves as the
primary key.

●​ This ID will be used to establish a relationship between the user and their
wardrobe items.

●​ Other user-related attributes, such as name, password will be stored in
this schema.

​ 2.2 Wardrobe Database Schema

●​ Each wardrobe item (e.g., shirts, pants, shoes) will have:​
A unique itemId to differentiate between individual clothing pieces.​
An owner’s userId, linking the item back to its respective user.

●​ This means that every wardrobe entry will be uniquely identified by a
combination of userId and itemId to ensure:

●​ Separation of user data – No user can access another’s wardrobe.
●​ Uniqueness of items – Two users can have identical clothing items, but

each instance remains unique to its respective owner.

​

3.​ API Description:

​ 3.1 Backend:

●​ /item/all/{userId}:
○​ GET - get all wardrobe for user id

​ ​ Output: {
"Shirts": [{

"item_id": int,
 "image": image,
 "color": string,
"last_used": date,
“event”: list[string]

}],
 "Pants": [{

"item_id": int,
 "image": image,
 "color": string,
"last_used": date,
“event”: list[string]

}],
 "Shoes": [{

 "item_id": int,
 "image": image,
 "color": string,
"last_used": date,
“event”: list[string]

] }
}

●​ /item/{userId}/{itemId}:

○​ GET - get specific item
​ ​ Output: {

"item": {
​ “Item_type”: string,

"item_id": int,
 "image": image,
 "color": string,
"last_used": date,
“event”: list[string]
}

}

○​ DELETE - delete specific item from wardrobe

●​ /item/{userId}:
○​ POST - create new item for user id

​ ​ Input: { “image”: string }
​ ​ Output: {

"new_item": {
​ “Item_type”: string,

"item_id": int,
 "image": image,
 "color": string,
"last_used": date,
“event”: list[string]
}

}

●​ /outfit/{userId}:
○​ POST - get generated outfit by user id

​ ​ Parameters: {
​ ​ ​ “Date”: date,
​ ​ ​ “Weather”: string,
​ ​ ​ “Is_raining”: bool,
​ ​ ​ “Event”: string
​ ​ }
​ ​ Output: {
​ ​ ​ “Shirt_id”: int,
​ ​ ​ “Pants_id”: int,
​ ​ ​ “Shoes_id”: int
​ ​ }

●​ /user/auth/signup:
○​ POST - register a new user

​ Input: {
​ ​ “username”: string,
​ ​ “password”: string
​ ​ }
​ Output : {
​ ​ “userid” : string
​ ​ }

●​ /user/auth/signup:

○​ POST - authenticate a user, return userId if valid
Input: {

​ ​ “username”: string,
​ ​ “password”: string
​ ​ }
​ Output : {
​ ​ “userid” : string

​ }

3.2 Messaging Queue:
●​ Sending a message for creating a new item as a json format. It will contain the

userId and item’s image.
{
​ message_id: {int}
​ time_stamp: {time}
​ user_id: {int}
​ Image: {serialized image}
}

●​ Sending a messageas a json format for deleting an item from the wardrobe. It will
contain the userId and itemId.
{
​ message_id: {int}
​ time_stamp: {time}
​ user_id: {int}
​ Item_id: {int}
}

3.3 Outfit Generator:
●​ /outfit/{userId}:

○​ POST - get generated outfit
​ Parameters: {
​ ​ ​ “Date”: date,
​ ​ ​ “Weather”: string,
​ ​ ​ “Is_raining”: bool,
​ ​ ​ “Event”: string
​ ​ }
​ Output: {
​ ​ ​ “Shirt”: Item,
​ ​ ​ “Pants”: Item,
​ ​ ​ “Shoes”: Item
​ ​ }

4.​ Use Case Diagram:
The user interface of the application provides three primary options:​
4.1 Add New Item:

●​ When adding a new clothing item, the user will upload an image of the clothing.
The image will undergo AI-powered labeling technology, which processes the
image to identify key features of the item (e.g., type of clothing, color, patterns,
material). The identified information will then be analyzed and stored in a
database for future use.

●​ This data will be tagged with relevant keywords and properties to allow the
system to recognize the item in future interactions and make recommendations.

​ 4.2 Delete Item:

●​ The user can remove an existing clothing item from their personal collection
within the application. This will update the database, ensuring the item no longer
appears in their available wardrobe list.

4.3 Generate Outfit:

●​ The user can input their personal preferences (e.g., style, color, occasion) and
the system will use AI algorithms to generate a complete outfit using the clothing
items the user has previously added.

●​ The AI will analyze the existing items, match them according to the user’s
personal data and preferences, and suggest an outfit that is visually and
contextually appropriate. This allows the user to receive a tailored
recommendation based on their personal wardrobe.

The overall goal of the application is to enhance the user's wardrobe experience by
leveraging AI to personalize the customization, addition, and removal of clothing items,
while also generating fashion-forward outfit suggestions based on their unique data.

5.​ UI Implementation:
The user interface (UI) of the application will be implemented using React,
React's component-based architecture will allow for modular, reusable UI elements and
seamless state management, ensuring a smooth user experience.

6.​ Main Pages In The Application

The following mockups of the high-level layout for our UI pages will be presented to the
user within our application.

6.1 Starts Page:
When the user first opens the app, the main screen will be “Generate Outfit” screen:​
It will have a 'Generate' button that will provide a new outfit suggestion. The user can
continue generating outfits until they are satisfied.

Left side is the first start page:​
We will have images for the “event type”
User will choose a location

6.2 Upload screen:
The user will be able to take a picture or load a new image of the new item and upload it
to their profile. It will then be used later in the outfit generation feature.

6.3 Wardrobe screen:
This page will present the user with information about all the items they currently have,
organized by item type (e.g., shirt, pants, etc.). The user will be able to view
and delete the items as desired.

	2.1 User Database Schema

