
NVRAM
BLINDI PRESENTS

OUR TEAM

Ranan
Harpak

Tal
Meschiany

Lir
Mimrod

Yoav
Shwartz

Mentor: Dr. Sarel Cohen
Project No. 231306

THE PROBLEM
In-memory database management systems (DBMSs) are important elements
of data pipel ines
A major source of DBMS memory overhead—which stresses memory
provisioning demands—is storage of indexed keys by the DBMS index data
structures
Lack of eff icient secondary indexing for unsorted data
Diff iculty in retr ieving specif ic information from unsorted data
Absence of a straightforward solution for organizing and accessing unsorted
data eff iciently
Crashes could lead to data loss

compact data structure with data in NVRAM and a tree index in DRAM
The index may be quickly reconstructed from the data after crash

NVRAM has high capacities and significant scalability compared
to DRAM
A standard NVRAM can store up to 6TB of memory compared to
64GB of a standard DRAM

SOLUTION

BENCHMARKS
we compare what happens for various
leaf cardinal it ies , i .e . , the amount of
keys that are stored in a leaf of the
tree

Our structure improves DRAM
usage by roughly an order of
magnitude. The cardinal ity does
not have an impact on insert t imes
for our structure, so they do not
serve as an obstacle to increase
leaf sizes

BENCHMARKS
we compare what happens for various
leaf cardinal it ies , i .e . , the amount of
keys that are stored in a leaf of the
tree.

Our structure improves DRAM
usage by roughly an order of
magnitude. The cardinal ity does
not have an impact on insert t imes
for our structure, so they do not
serve as an obstacle to increase
leaf sizes

ARCHITECTURE
We base our data structure on the µTree. The
aim of the µTree is to provide a fast data index,
which can quickly be restored from NVRAM in
case of a crash or interruption. Whi le the space
usage within NVRAM is already quite smal l ,
there is much to be gained for the tree
structure in the DRAM. Especial ly for larger
keys, the space used in DRAM is quite high, as
al l the keys are dupl icated in both DRAM and
NVRAM. We aim to remove this dupl ication by
using bl ind tr ies in the DRAM instead of storing
the keys. Whereas the leaf nodes of the original
µTree use the same array to point to the data,
we use a more sophisticated approach: Within
the node we store a bl ind tr ie to map from keys
to a pointer to the data.

ARCHITECTURE
A bl ind tr ie is a
compressed tr ie that does
not label the edges but
instead records in each
node the posit ion of the bit
in which the node’s
chi ldren differ . The bl ind
tr ie does not expl icit ly
store al l key bits , and so is
more compact than a
compressed tr ie

In our project we implemented code
to be used with NVRAM which is a
 relatively new hardware.

With the increase of the amount of
data stored, a more memory efficient
way to store the required keys.

CONCLUSION

