
Instructor : Dr . Sarel Cohen

CLOUDEXIFY
PROJECT #: 230601

Ori
Braverman

Shachar
Levy

Maayan
Mashhadi

Dr. Sarel Cohen Moshik Hershkovitch

Senior Research Scientist @ IBM
Research

Ph.D. Candidate @ TAU

Daniel Cohen
M.Sc. Student

Supervised by Dr. Sarel
Cohen & Moshik

Hershkovitch

Yarin Pinyan

Director of Security
Research @ Startup

THE PROBLEM
Lack of efficient secondary indexing for unsorted data.

Existing indexing methods are inadequate for handling unsorted data
effectively.

Difficulty in retrieving specific information from unsorted datasets.

Absence of a straightforward solution for organizing and accessing
unsorted data efficiently.

TARGET & INTENTION
01

02

03

04

Address the challenge of efficient secondary indexing for
unsorted data.

Extend a novel approach that enhances the retrieval of
specific information from unsorted datasets.

Colaborate with IBM research and startups
for industrial aplicativity.

05 Improve the overall performance and
effectiveness of secondary indexing methods.

To improve query performance, increased flexibility, and
reduced data storage overhead in DynamoDB tables, by
creating secondary index using LSI.

Permutation Vector
For mapping predictions into the
underlying unsorted base data.

Learned Index

Which maps a lookup key to a bounded
search range.

Fingerprint Vector
To prune unnecessary accesses during equality

lookups.

The local search uses the
permutation vector to locate
corresponding entries in the

base data.
The fingerprint vector prunes

unnecessary accesses.

BTree

LSI
 LSI is a learned index structure that can index unsorted
data. It uses machine learning techniques to build a
model that approximates the distribution of the data.
LSI achieves a good trade-off between space efficiency
and lookup performance.

ART

RobinHash

BTree is a balanced tree-based index structure
that organizes data in a sorted order. It is

commonly used in traditional database
systems. BTree supports efficient insertion,

deletion, and search operations. It is suitable for
both disk-based and memory-based systems.

The Adaptive Radix Tree (ART) is a data structure
designed for efficient indexing and retrieval of key-
value pairs in databases. It adapts its structure
dynamically based on the data distribution, resulting in
efficient search operations. ART is known for its low
memory overhead and high performance.RobinHash is a hash table-based index structure that

uses a robin-hood hashing algorithm. It provides fast
lookup and insertion operations, making it suitable for in-

memory databases. RobinHash consumes more space
compared to other index structures.

compare their performance in terms of build times, lookup latency, and space usage.

Comparison Between Other Solutions

osm

amzn

fb

wiki

Datasets used to evaluate LSI:

 refers to book popularity data

to cell IDs from Open Street Map

refers to randomly sampled
Facebook user IDs

refers to timestamps of edits
from Wikipedia.

Bui ld t imes in seconds for di f ferent
index structures .
The BTree index structure achieves
the lowest bui ld t imes, fo l lowed by
RobinHash and LSI with an error
bound of 8 . ART, on the other hand,
has the highest bui ld t imes.

lower-bound lookups using non-
existing keys. The graph represents
the latency (in nanoseconds) of the
lookups, and the text annotations on
the graph indicate the error bounds.

Equal ity lookups on the amzn dataset comparing LSI to
RobinHash.
RobinHash has a bit less latency then LSI 's . However,
RobinHash also consumes 4 t imes the amount of space
compared to LSI .

Compares binary search and linear search with different
fingerprint sizes. The brackets in the figure indicate the number

of fingerprint bits used for each search method.

1
2

3
4

5
Learn and
implement

LSI

Learn the
structure in
DynamoDB

Create a
table of

DynamoDB

Process the
data and

convert it to
LSI input
stracture

Run
benchmark

on our
dataset

OUR WORK PROCESS

DYNAMO-DB
Amazon DynamoDB is a fully managed NoSQL database service offered by
Amazon Web Services (AWS), designed to provide high availability,
scalability, and low-latency access to data.
Its underlying structure is based on a key-value store, where each item in a
table is uniquely identified by a primary key.
DynamoDB supports secondary indexes, which enhance query flexibility.
These secondary indexes use a B-tree data structure for efficient indexing,
making it possible to retrieve data quickly based on attributes other than the
primary key.

DynamoDB Benchmark results

Connect with us.

https://github.com/shacharlevy/
Cloudexify

https://github.com/shacharlevy/Cloudexify

