

Table of Contents

Presented by: Avraham Levi and Noa Tsivoni

Computer Science – Machine Learning and Medical Data

Introduction

◆ Cancer is a disease where certain cells in the body start growing out of control and don't stop when they should.

Normally, the body controls how cells grow and die. But in cancer, this control is lost — the cells keep growing, even when the body doesn't need them.

- ♦ Colon cancer is the 3rd most common cancer in the world
- ◆ 1.93 million new cases in 2022 (WCRF)
- ♦ Highest rates: Europe, North America, Australia
- ♦ Mostly affects people aged 50+ (WHO)
- ◆ Second most common cancer in Israel for both men and women

Early detection of colorectal cancer can **significantly increase survival rates**, often allowing for less aggressive treatment and a better quality of life.

Unfortunately, symptoms in the early stages are usually **mild or go unnoticed**, such as changes in bowel habits, fatigue, or slight bleeding, which many people ignore or mistake for other issues.

Our Mission

- ◆ **Primary Goal:** To develop predictive models for colorectal cancer (CRC) risk using the UK Biobank dataset.
- ♦ Specific Focus: To try specifically investigate the predictive value of formal clinical sleep disorder diagnoses within this cohort.

Literature Review

Xie, H., Xi, Z., Wen, S., et al. (2025). Associations between chronotype, genetic susceptibility and risk of colorectal cancer in UK Biobank. *Journal of Epidemiology and Global Health*, 15(1), 84.

https://pubmed.ncbi.nlm.nih.gov/40208451/

Lee, D. B., An, S. Y., Pyo, S. S., et al. (2023). Sleep fragmentation accelerates carcinogenesis in a chemical-induced colon cancer model. *International Journal of Molecular Sciences*, 24(5), 4547.

https://www.mdpi.com/1422-0067/24/5/4547

Lin, C. L., Liu, T. C., Wang, Y. N., Chung, C. H., & Chien, W. C. (2019). The association between sleep disorders and the risk of colorectal cancer in patients: A population-based nested case-control study. *In Vivo*, *33*(2), 549–555.

https://iv.iiarjournals.org/content/33/2/573

Chen, J., Chen, N., Huang, T., Huang, N., Zhuang, Z., & Liang, H. (2022). Sleep pattern, healthy lifestyle and colorectal cancer incidence. *Scientific Reports*, 12(1), 18317.

https://www.nature.com/articles/s41598-022-21879-w

UK Biobank

UK Biobank

Over 500,000

volunteers recruited

Lifestyle & Health

Questionnaires

Covers sleep habits, diet, physical activity, mental health, and more

Medical Diagnostics

Linked hospital, cancer, and death records for long-term health tracking

Biological Samples

Includes blood, urine, and saliva samples and more

Process

primary outcome

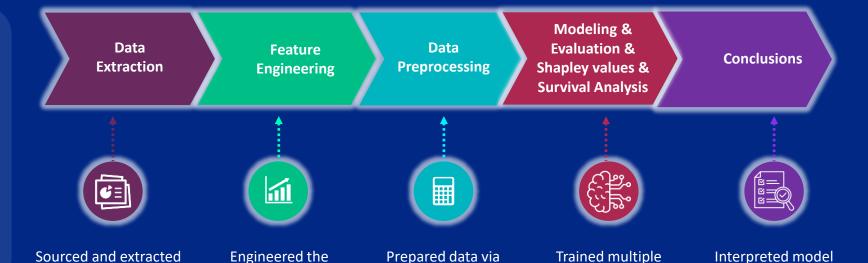
and key predictors

relevant data from the

UK Biobank

Process

We began with the raw UK Biobank data, from which we engineered our outcome variable and key predictors. The data was then carefully prepared for modeling by splitting it into sets, handling missing values, and scaling features. Finally, we trained several machine learning models to predict CRC risk and understand the most significant factors.



splitting, imputation,

encoding, and

scaling

models and

evaluated their

predictive

performance

results and identified key risk

factors

Clinical Picture

Blood Markers
Waist circumference
Blood pressure
And more...

Lifestyle & Medical History

Age

Sex

smoking years

Alcohol consumption

Family history of colon cancer

diabetes

And more...

Sleep Profile

Clinical Diagnosis (sleep apnea, insomnia, e.g.)

Self-Reported (sleep duration, snoring habits, daytime sleepiness, e.g.)

Ensuring a Correct Timeline:

- Guaranteeing all predictors were measured before the outcome developed
 - Eliminating Reverse Causation by excluding 2,317 prevalent CRC cases
 - Defining a personal "Time Zero" (Baseline) for each participant

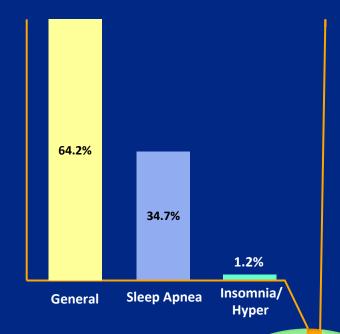
Feature Engineering

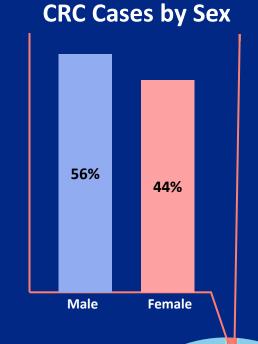
- Distilled arrays into meaningful binary flags (1/0)
- Engineering the Outcome Variable (CRC_event)
- Unifying Sleep Data into a Single Predictor

Refining the Data Based on EDA

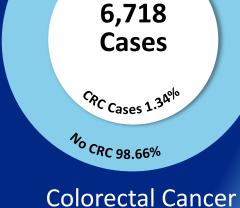
- Conducted EDA to identify weaknesses
- Addressed high missingness by either transforming or removing features
- Eliminated redundant source data

- ♦ We analyzed data from **500,053** participants
- ♦ The average participant was **57 years old**
- ♦ 54.5% women and 45.5% men





Both CRC and diagnosed sleep disorders are rare events (<2%), highlighting the prediction challenge



Our Preprocessing Strategy: The Leak-Proof Framework

Preventing Data Leakage

Our guiding principle: he test set was kept separate and untouched, ensuring our final score is honest and not inflated

Splitting the Data First

We created our Train (70%), Validation (15%), and Test (15%) sets before any other processing step.

Learning All Rules from the Training Set

All preprocessing rules—from imputation values to encoding categories—were learned only from the training data

Missing Values (Imputation)

Filled numerical features using the median. Filled categorical features using the mode.

Categorical Features

Used One-Hot Encoding

Outliers

Performed Outlier Capping on numerical features

Modeling Performance

Modeling

Our primary challenge was the severe class imbalance in the data. To thoroughly test our model's stability and capabilities, we designed **three distinct experimental scenarios**:

Scenario 1:

Perfect Balance

Scenario 2:

Balanced Training,

Realistic Test

Fully balans and to imbalance

Fully balanced training set . The validation and test sets, however, remained imbalanced to reflect real-data conditions.

Scenario 3:

Full Imbalance

Data in its natural state, preserving the imbalanced state

Small, perfectly balanced dataset by taking all 6,718 cancer patients and sampling an equal number of 6,718 healthy controls.

Modeling

classic, highly interpretable model. provides an excellent **baseline** for comparison and helps identify key predictors

It uses a logistic function to estimate the probability of a binary outcome

Random Forest

A powerful and flexible ensemble model capable of capturing complex interactions. By averaging many decision trees

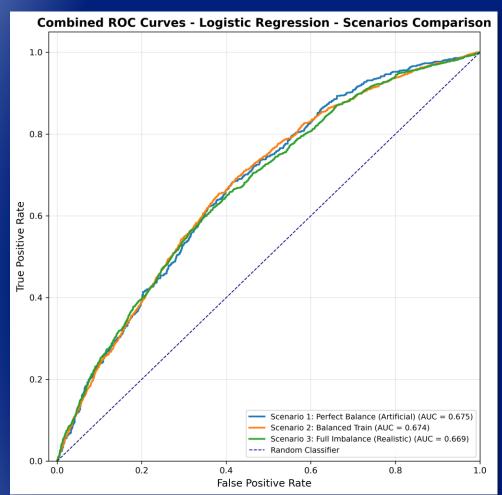
It builds a "forest" of many individual decision trees. Each tree is trained on a random subset of the data and features. To make a prediction, it collects the predictions from all its trees and takes the majority vote

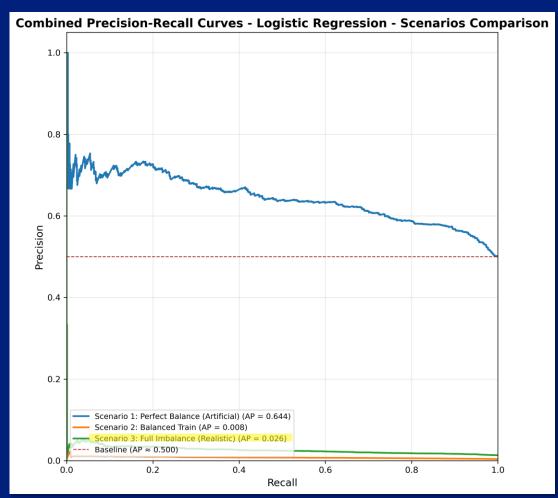
XGBoost (tuned)

Considered as a superior performance and high accuracy model

It's a "boosting" algorithm, meaning it builds a sequence of decision trees. Each new tree in the sequence tries to correct the errors made by the previous trees.

Logistic Regression



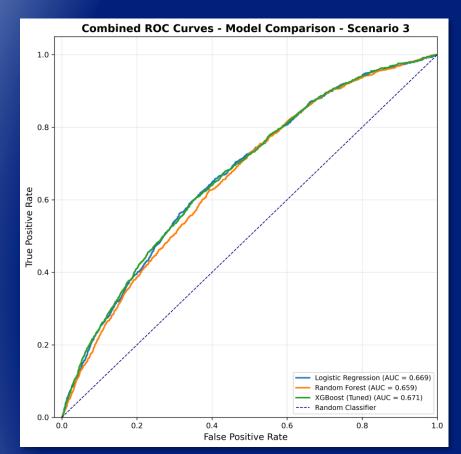


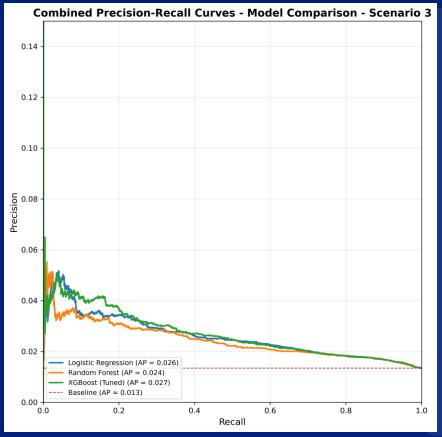
View Full
Validation
Results
(Appendix)
-

Click Me

- ♦ The ROC Deception: ROC curves show virtually identical performance across all scenarios (AUC ≈ 0.67)
- ◆ Scenario 3: the most realistic approach, which incurred no performance penalty and demonstrated a very slight advantage on the PR curve

Model Performance Comparison



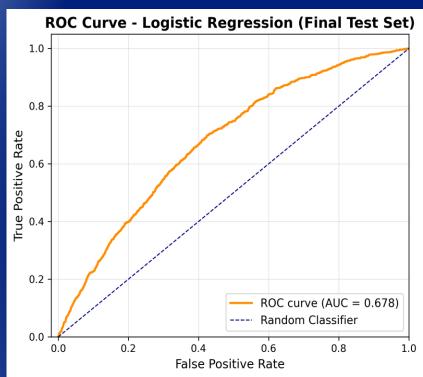


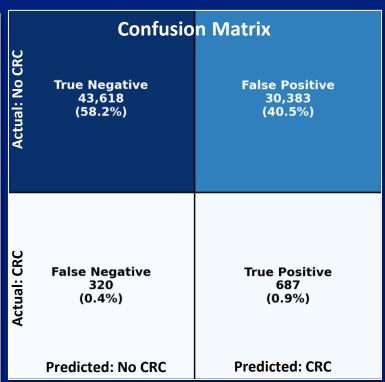
♦ Consistent Performance
Across Models: All models,
from simple logistic regression
to complex XGBoost, show
remarkably similar
performance on both the ROC
and Precision-Recall curves.

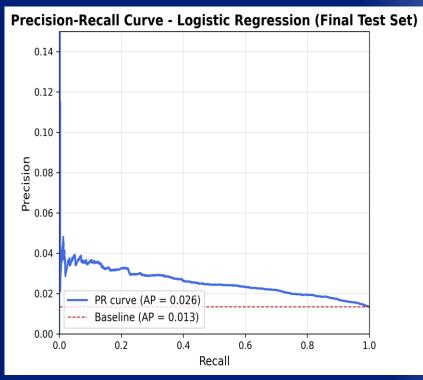
- ◆ The similar results indicate that a more complex model does not necessarily lead to better performance with this data.
- ◆ The Takeaway: The simpler, more interpretable Logistic Regression model performs just as well the advanced models, making it a highly valuable and efficient tool for this problem.

Final Verdict: Logistic Regression on Unseen Test Data

Evaluating the Model's Real-World Performance



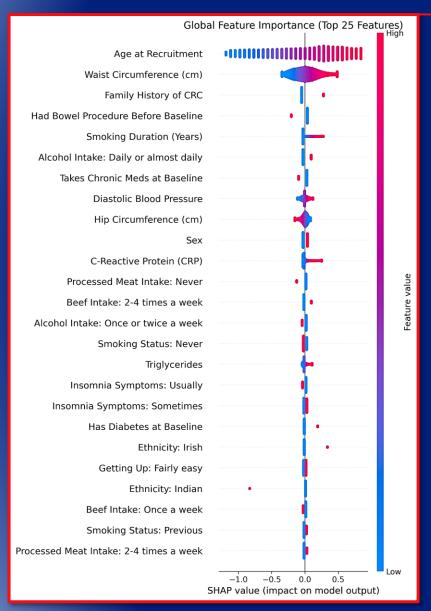




- ♦ The model successfully identifies over two-thirds of all actual cancer cases in the unseen data (68%)
- ♦ **High Recall with a Big Trade-Off:** The model successfully identifies 68% of cancer cases (High Recall), but at the cost of a very low Precision (2.2%), generating a large number of false alarms.
- ◆ A Low-Cost, First-Stage Assessment Tool. The model's value is not in its precision, but in its use of non-invasive, readily available data. It shows potential as a preliminary tool for risk stratification, not a direct screening recommendation.

SHAP

Understanding the Key Drivers in our Logistic Regression Model



	coef	P > z	[0.025	0.975]
Age at Recruitment	0.557	<0.01	0.515	0.589
Waist Circumferences	0.1797	<0.01	0.115	0.244
Family History	0.0921	<0.01	0.067	0.117
Had Bowel Procedure	-0.073	<0.01	-0.103	-0.043
Sleep Disorder: Apnea	0.0189	0.108	-0.004	0.042
Sleep Disorder: Insomnia/Hypersomnia	-0.001	0.946	-0.031	0.029
Sleep Disorder: General/Unspecified	-0.003	0.838	-0.032	0.026

- ◆ Established risk factors dominate: Age, Family History, and Waist Circumference are confirmed as strong predictors
- ◆ Self-reported sleep variables appear in the top 25 features but have a demonstrably smaller impact than the primary risk factors.
- ♦ Key Insight: Our core variable, clinical Sleep Disorder Status, was not statistically significant

Survival Analysis

Do Sleep Disorders Accelerate CRC Risk Over Time?

Baseline

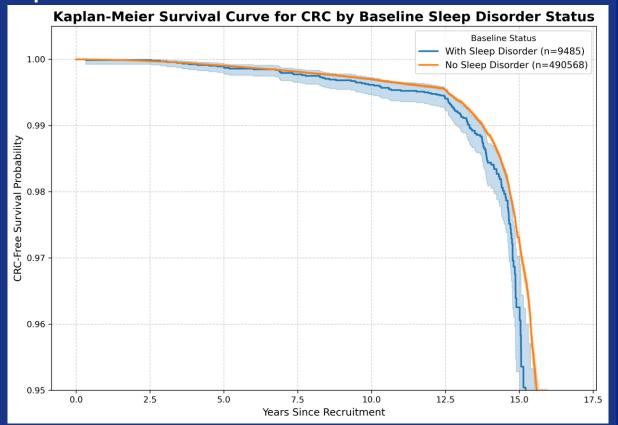
Study End

Lost Follow-Up

Death

CRC Diagnosis

Kaplan - Meier



- ◆ Kaplan-Meier curves show nearly identical survival probability, suggesting no strong, unadjusted effect between the groups.
- ◆ After adjusting for confounders, the Cox model confirms a **non- statistically significant** impact of sleep disorders on CRC risk (p=0.26).

Cox Model

	HR	P > z	HR Lower 95% CI	HR Upper 95% CI
Has_Sleep_Disorder	1.099	0.26	0.932	1.297

Overall Conclusion: Consistent with our classification models, a formal clinical diagnosis was not a primary driver of CRC risk over time in this cohort.

Conclusions

Conclusions & Key Takeaways

A Reasonable Screening Tool for This Cohort

The model's value is not in its precision, but in its ability to identify a high-risk group using **non-invasive**, **readily available data**. It serves as a **potential preliminary tool** for risk stratification, not a diagnostic test.

No Statistically Significant Link for Clinical Diagnoses

Across all our analyses of this specific dataset, a formal clinical diagnosis of a sleep disorder was not a statistically significant predictor of colorectal cancer risk.

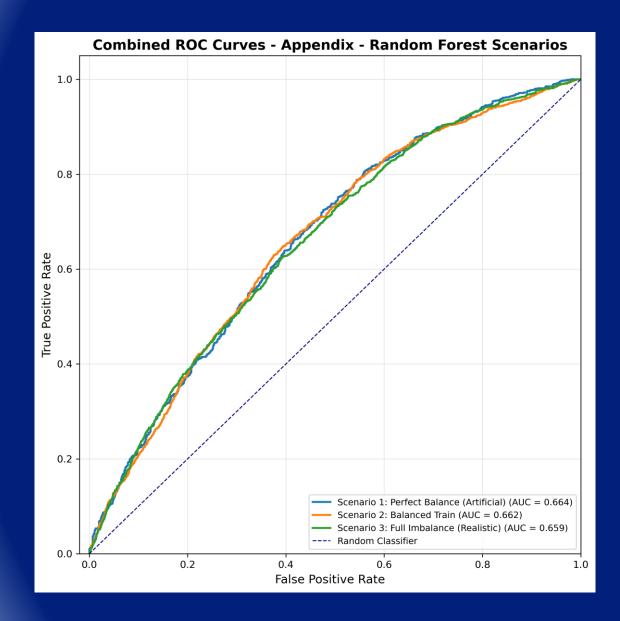
Model Validity Confirmed on Our Data

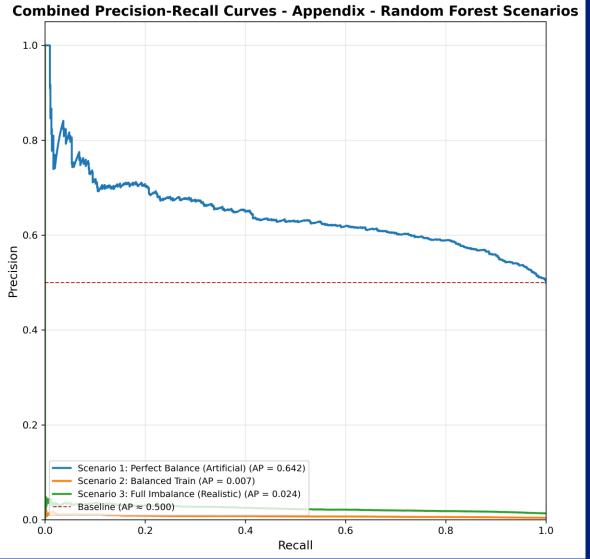
Within our dataset, the model correctly identified Age, Family History, Waist Circumference, and Smoking Duration as the most dominant risk factors, validating its ability to learn medically-recognized patterns.

Questions 7

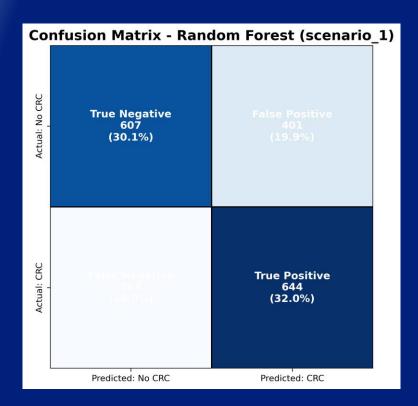
Appendix

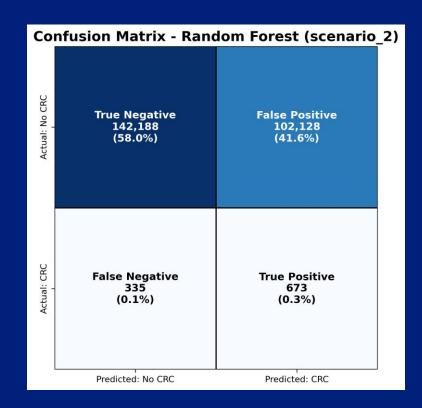
Random Forest

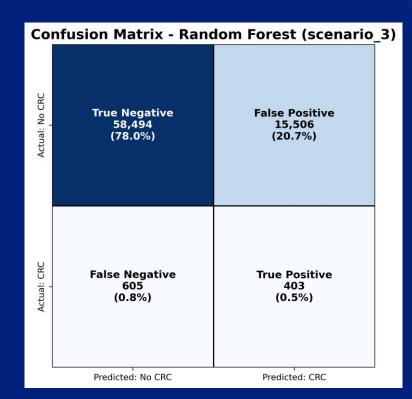




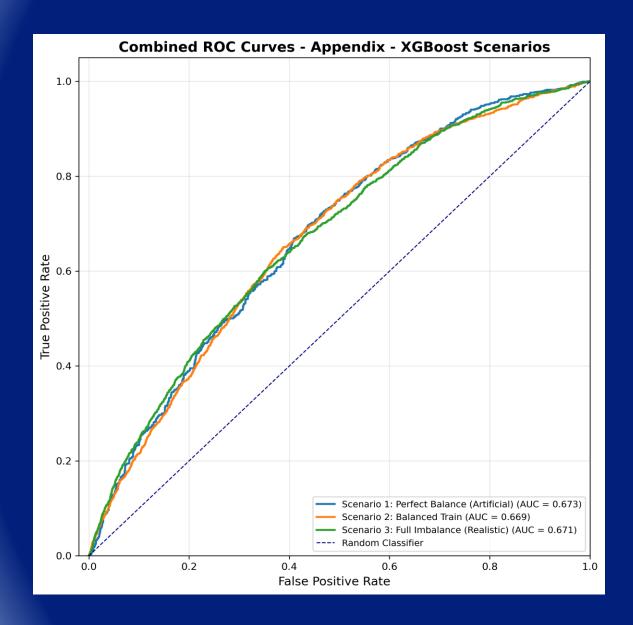
Random Forest Confusion Matrixes

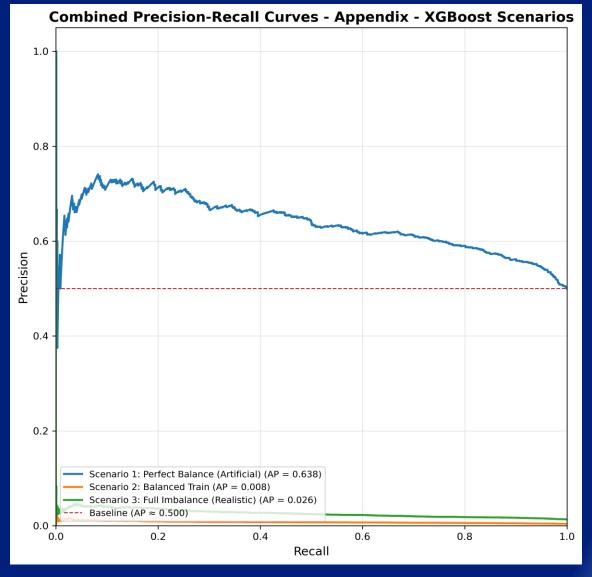






XG Boost





XG Boost _____ Confusion Matrixes

