-

Project Overview

* Project Name: Robo Advisor Portfolio Recommender

* Goal: Build a web-based robo advisor that recommends
personalized investment portfolios using modern portfolio theory
(Markowitz Model).

* Key Feature: Dynamic portfolio recommendations based on the
user's risk profile (Conservative / Balanced / Aggressive).

Problem Statement

* Problem: Retail beginner-advanced investors struggle to build
efficient portfolios aligned with their risk preferences.

* Challenges Faced by Users:
1. Lack of financial knowledge
2. Overwhelmed by stock market options
3. No personalized financial guidance

* Need: A system that simplifies investment and provides trustable
smart recommendations.

Target Users & Value Proposition

* Target Audience:
* Beginner to intermediate investors
* Young professionals with limited financial experience

* Value Provided:
 Data-driven portfolio suggestions
* Simple, intuitive interface
* Clearrisk-adjusted trade-offs

High-Level Architecture

Frontend (Flask Web App):

* Built with Python + Flask, served over HTTP API.

* Allows users to select risk profile and view personalized portfolio
 Additional tabs: market statistics, iInvestment view, leaderboard

Backend (Python):

* Fetches financial data using yfinance (Yahoo Finance API)
* Core logic based on Markowitz Efficient Frontier model

* Portfolio simulation, optimization, and recommendation

Backend Implementation (Tal Koskas & Ron Alima)

MarkowitzModel Class:

e Calculates expected returns and covariance matrix from historical
prices

* Simulates 100,000 portfolios
* Computes Sharpe Ratio, Returns and Volatility

ModelManager Class:
* Trains and stores models (e.g. “markowitz”)
* Returns optimal portfolio per risk profile

Backend Implementation (Continued)

Risk Profiles Implemented:

* Conservative — lowest volatility
* Balanced — max Sharpe ratio

* Aggressive — highest return

REST API Endpoint:

* /api/portfolio: Accepts risk profile, returns recommended portfolio
in JSON

Smart Logic — Markowitz Model

* Inputs: Historical prices of selected tickers (2020-2025)

* Simulation:
* Portfolio weights sampled randomly
* Return, volatility, Sharpe calculated per portfolio
* Efficient frontier plotted

* Selection: Best-fit portfolio for each risk profile strategy

Frontend Implementation (Ron Alima)

* Built using Flask + HTML/CSS/JS

* Ul Elements:
* Dropdown for selecting risk profile
* Portfolio display: ticker + allocation + return
 Additional tabs: Statistics, Investments, Leaderboard, Profile

* Profile Tab:
* User can input budget and view share profit

e Statistics Tab:

* Shows user budget
* Graph of SPY share performance over time (day/week/month)

Frontend Implementation (Continued)

* Investments Tab:
* Displays budget, shares profit, achievements

* "My Positions" table: symbol, shares, entry price, type, % and $
difference, stop limit, add new position option

* Leaderboard Tab:
* Displays achievements (points), rank, shares profit
* Ranks table: rank, name, achievements, profit

* Uses AJAX to call Flask API
* Responsive design for easy use on desktop/mobile

Architecture Flow — Portfolio
Recommendation Flow

O User

(e

REST API CaII
/api/investing_advi

|:| Backend
Investing Advisor |
Handler MonQODB
(Business Logic Layer)

Recommendeded

Portfolio
(JSON)

}
[m] Portfolio UI

User Interface Features

* - Login/Register Dialog (MUI Dialog + Validation)

* — Portfolio Page: Dynamic allocation table per user

e — Statistics Tab: SPY chart + budget display

* — lnvestments Tab: Positions, achievements, gain/loss
 — Leaderboard Tab: AJAX-based real-time updates

Backend Architecture Highlights

* - Built with ASP.NET Core 8 (C#)

* — Controllers (e.g., InvestingAdvisorController)

* — Business Logic Layer: Service handlers per domain

* —MongoDB integration (Users, Positions, Risk Profiles)

 — REST API: returns recommended portfolio integrated with tal’s
part.

* — Coordination with Python ML model via internal service

Demo Time - Live Use Case

* Input: User selects risk profile (via dropdown)

 Output:
* Portfolio recommendation: e.g., SPY: 20%, AAPL: 15%, etc.
* Visualization of efficient frontier
* |Interactive tab interface

Challenges & Future Plans

* Challenges:
* Financial data accuracy and availability
* High computational load for simulations
* User-friendly interface for non-technical users

* Next Steps:
 Add LSTM-based return forecasting module (deep learning)
* Integrate database (user sessions, portfolio history)
* Deploy full system to cloud (e.g., AWS/Heroku)
* |Improve interactivity with real-time refresh and analytics

Summary & Q&A

* Progress:
* End-to-end MVP: backend logic, API, and frontend interface
* Real data, real logic, real-time demo

* Learning Outcomes:
* Full-stack system implementation
* Practical use of finance + ML concepts
* Collaboration across backend and frontend

* Any questions or feedback?

	Slide 1: InvestMate – Midterm
	Slide 2: Project Overview
	Slide 3: Problem Statement
	Slide 4: Target Users & Value Proposition
	Slide 5: High-Level Architecture
	Slide 6: Backend Implementation (Tal Koskas & Ron Alima)
	Slide 7: Backend Implementation (Continued)
	Slide 8: Smart Logic – Markowitz Model
	Slide 9: Frontend Implementation (Ron Alima)
	Slide 10: Frontend Implementation (Continued)
	Slide 11
	Slide 12: User Interface Features
	Slide 13: Backend Architecture Highlights
	Slide 14: Demo Time – Live Use Case
	Slide 15: Challenges & Future Plans
	Slide 16: Summary & Q&A

