
InvestMate – Midterm

By Tal Koskas and Ron Alima

Project Overview

• Project Name: Robo Advisor Portfolio Recommender
• Goal: Build a web-based robo advisor that recommends

personalized investment portfolios using modern portfolio theory
(Markowitz Model).

• Key Feature: Dynamic portfolio recommendations based on the
user's risk profile (Conservative / Balanced / Aggressive).

Problem Statement

• Problem: Retail beginner-advanced investors struggle to build
efficient portfolios aligned with their risk preferences.

• Challenges Faced by Users:
1. Lack of financial knowledge
2. Overwhelmed by stock market options
3. No personalized financial guidance

• Need: A system that simplifies investment and provides trustable
smart recommendations.

Target Users & Value Proposition

• Target Audience:
• Beginner to intermediate investors
• Young professionals with limited financial experience

• Value Provided:
• Data-driven portfolio suggestions
• Simple, intuitive interface
• Clear risk-adjusted trade-offs

High-Level Architecture
Frontend (Flask Web App):
• Built with Python + Flask, served over HTTP API.
• Allows users to select risk profile and view personalized portfolio
• Additional tabs: market statistics, investment view, leaderboard

Backend (Python):
• Fetches financial data using yfinance (Yahoo Finance API)
• Core logic based on Markowitz Efficient Frontier model
• Portfolio simulation, optimization, and recommendation

Backend Implementation (Tal Koskas & Ron Alima)

MarkowitzModel Class:
• Calculates expected returns and covariance matrix from historical

prices
• Simulates 100,000 portfolios
• Computes Sharpe Ratio, Returns and Volatility

ModelManager Class:
• Trains and stores models (e.g. “markowitz”)
• Returns optimal portfolio per risk profile

Backend Implementation (Continued)

Risk Profiles Implemented:
• Conservative – lowest volatility
• Balanced – max Sharpe ratio
• Aggressive – highest return

REST API Endpoint:
• /api/portfolio: Accepts risk profile, returns recommended portfolio

in JSON

Smart Logic – Markowitz Model

• Inputs: Historical prices of selected tickers (2020–2025)
• Simulation:

• Portfolio weights sampled randomly
• Return, volatility, Sharpe calculated per portfolio
• Efficient frontier plotted

• Selection: Best-fit portfolio for each risk profile strategy

Frontend Implementation (Ron Alima)

• Built using Flask + HTML/CSS/JS
• UI Elements:

• Dropdown for selecting risk profile
• Portfolio display: ticker + allocation + return
• Additional tabs: Statistics, Investments, Leaderboard, Profile

• Profile Tab:
• User can input budget and view share profit

• Statistics Tab:
• Shows user budget
• Graph of SPY share performance over time (day/week/month)

Frontend Implementation (Continued)

• Investments Tab:
• Displays budget, shares profit, achievements
• "My Positions" table: symbol, shares, entry price, type, % and $

difference, stop limit, add new position option

• Leaderboard Tab:
• Displays achievements (points), rank, shares profit
• Ranks table: rank, name, achievements, profit

• Uses AJAX to call Flask API
• Responsive design for easy use on desktop/mobile

Architecture Flow – Portfolio
Recommendation Flow

User Interface Features

• - Login/Register Dialog (MUI Dialog + Validation)
• – Portfolio Page: Dynamic allocation table per user
• – Statistics Tab: SPY chart + budget display
• – Investments Tab: Positions, achievements, gain/loss
• – Leaderboard Tab: AJAX-based real-time updates

Backend Architecture Highlights

• - Built with ASP.NET Core 8 (C#)
• – Controllers (e.g., InvestingAdvisorController)
• – Business Logic Layer: Service handlers per domain
• – MongoDB integration (Users, Positions, Risk Profiles)
• – REST API: returns recommended portfolio integrated with tal’s

part.
• – Coordination with Python ML model via internal service

Demo Time – Live Use Case

• Input: User selects risk profile (via dropdown)
• Output:

• Portfolio recommendation: e.g., SPY: 20%, AAPL: 15%, etc.
• Visualization of efficient frontier
• Interactive tab interface

Challenges & Future Plans

• Challenges:
• Financial data accuracy and availability
• High computational load for simulations
• User-friendly interface for non-technical users

• Next Steps:
• Add LSTM-based return forecasting module (deep learning)
• Integrate database (user sessions, portfolio history)
• Deploy full system to cloud (e.g., AWS/Heroku)
• Improve interactivity with real-time refresh and analytics

Summary & Q&A

• Progress:
• End-to-end MVP: backend logic, API, and frontend interface
• Real data, real logic, real-time demo

• Learning Outcomes:
• Full-stack system implementation
• Practical use of finance + ML concepts
• Collaboration across backend and frontend

• Any questions or feedback?

	Slide 1: InvestMate – Midterm
	Slide 2: Project Overview
	Slide 3: Problem Statement
	Slide 4: Target Users & Value Proposition
	Slide 5: High-Level Architecture
	Slide 6: Backend Implementation (Tal Koskas & Ron Alima)
	Slide 7: Backend Implementation (Continued)
	Slide 8: Smart Logic – Markowitz Model
	Slide 9: Frontend Implementation (Ron Alima)
	Slide 10: Frontend Implementation (Continued)
	Slide 11
	Slide 12: User Interface Features
	Slide 13: Backend Architecture Highlights
	Slide 14: Demo Time – Live Use Case
	Slide 15: Challenges & Future Plans
	Slide 16: Summary & Q&A

