CodeViz

An Al-Powered Platform for Algorithm
Visualization and Understanding

Shafir Cohen & Omer Efron

Table of Contents

Introduction: Bridging the Gap in CS Education
The Challenge with Learning Algorithms
Our Solution: CodeViz

Screenshots from the project

System Architecture

The User Journey

Inside the Backend

Ul & Visualization Showcase
Challenges & Key Learnings

The Road Ahead: Future Work
Conclusion

Thank You

Introduction: Bridging the Gap in CS Education

01

Mission Statement

Making complex algorithms accessible and understandable.

03

Core Technology

Leverages large language models to analyze code, visualize
visualize execution, and provide detailed insights.

3 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

02

What is CodeViz?

An interactive web application designed to help users
understand code through Al-generated visualizations and
and explanations.

04 |

Workshop Context

Developed as a final project for an Al workshop focused on
on educational technology applications.

The Challenge with Learning Algorithms

01

The Problem

Learning algorithms from static resources is
difficult. The abstract nature of data
structures poses a challenge for learners.

02

The Gap

There is a need for tools that offer deep,
deep, contextual insights beyond simple
simple interactivity.

4 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

03

Our Motivation

To build a dynamic, Al-enhanced platform
platform that makes algorithm education
education intuitive and effective.

Our Solution: CodeViz

01 02
Code Analysis Interactive Visualization
Input custom code for on-the-fly analysis. Generates animated, step-by-step

visualizations.

5 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

03

Al-Powered Insights

Provides complexity analysis,

explanations, and real-world metaphors.

metaphors.

04

Project Goals

Demystify algorithms like Huffman
Encoding and Binary Search

Enable hands-on learning

Showcase LLM applications in EdTech

Examples

EViz Al-Powered # Huffman Encoding
Al Code Analyzer

Paste any algorithm code for instant Al-powered analysis and visualization suggestions

thm Code Analyzer

ir algorithm code:

SNAL A Ny,

=0,b=1,
leti=2;1<=n;i++){
ttemp=a+b;

= b:

= temp;

m b; ¢ Lightning storm of Al power #

lCodeViz Al-Powered & Huffman Encoding L Examples ? Help
Al Code Analyzer

Paste any algorithm code for instant Al-powered analysis and visualization suggestions
Algorithm Code Analyzer Binary Search Bubble Sort Fibonacci Sequence

Enter your algorithm code:

Paste or type your algorithm code here...

® Analyze Code

IVEaw.

M Interactive Visualization

Binary Search Visualization

Searching for 7 in sorted array

Zinary s2arch efficiently finds elemeants by repsatedly dividing the search space in haif

© Play © Stop S Reset Speed: Normal WV

Step10of 9

Starting binary search for 7 in sorted array

Left: O Right: 9 Mid: N/A

0)
HE0EEEE0RE
0 1 2 3 4 5 6 7 8 9

@ ActiveRange @ MidPoint(v) @ TargetFound @ Eliminated

0

-
n
-
Q
c
m

=@
m
©
ey
T

Next 2

Algorithm Complexity

Time Complevitv: Ofloa n) CSpare Complexitv: OF1)

ydeViz Ai-Powered @ Code Analyzer L. Examples ? Help
. Huffman Encoding

Watch how text gets compressed using optimal binary codes. Enter any text
below to see the step-by-step visualization.

#" Enter your text:

Type or paste your text here... Example: 'hello world' or 'aavdvdsvvsdvsdq'

Generate Huffman Code

@ Leaf Nodes (Characters) @ Internal Nodes 0 Left Edge 1 Right Edge

123456@8910

a CodeViz A-powered

@ Huffman Encoding @ Code Analyzer m ? Help

' Algorithm Examples

Explore pre-analyzed algorithms with interactive visualizations

Search algorithms, descriptions, or tags...

5 examples found

Binary Search edun

Efficiently finds an element in a sorted array by
repeatedly dividing the search space in half.

Time: Oflog n)

Space: oM

divide-and-conquer sorted-array efficient

Searching Explore —

Fibonacci Sequence &=

Computes the nth Fibonacci number using
dynamic programming approach.

Bubble Sort s

A simple sorting algorithm that repeatedly steps
through the list, compares adjacent elements and
swaps them if they are in the wrong order.

Time: ofn?)
Space: o)

comparison-sort in-place stable

Sorting Explore —

Quick Sort Hard

A divide-and-conquer sorting algorithm that picks
a pivot and partitions the array around it.

All Categories v

@® Easy @ Medium Hard

Huffman Encoding e

A lossless data compression algorithm that assigns
variable-length codes to characters based on their
frequencies.

Time: O(n log n)

Space: o(n)

greedy compression binary-tree

Compression Explore —

User

Interacts with UI

Client-Side Componergs

System Architecture

Frontend (React/Next.js)

Manages State & Renders UI Makes API Calls Returns data to

; N/

Interactive Visualizations 01 02 03

(Framer Motion, Tailwind API Client (axios)
CSS) / \
[] Frontend Backend Al Service & Engine
HTTP Request HTTP Response (JSON data)

|
Nnger-side Companwz(

Backend (Node.js/Express) Built using Next.js and React Powered by Node.js and Express.js Integrates GPT-4 via OpenAl API
l
Routes Request to Enhanced with Framer Motion for Handles processing and communication Custom algorithm engine for step
animations with Al service generation
Controllers

(e.g., algorithms.js)

Services Layer

For AI tasks For step-hy-step logic
l Core Backend Logic v
Algorithm Engine
CodeAnalyzer Service (e.g., Huffman, Binary
Search)
[Returns structured JSON

Sends prompt for analysis .
B E o analysis

1ZodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding
External OpenAI API (GPT-4)

Start

User Lands on Welcome

Page

Path 3: Explore Examples

«—

User navigates to
Examples Gallery

}

Frontend fetches and
displays available
algorithms

!

User selects an example
(e.g., Binary Search)

Frontend displays the
selected
example's code, analysis,
and visualization

Path 1: Analyge Custom

What does the user want to
do?

Visualize an Algorithm

Browse Pre-built Examples Analyze Custom Code 5
(e.g., Huffman Encoding)

User navigates to
Code Analyzer

l

User pastes code
into the editor

v

User Clicks 'Analyze’

v

Frontend sends code to
Backend

v

Backend's AL Service
generates analysis

l

Frontend displays insights:

- Type & Complexity
- Explanation
- Metaphor

—

13

Path 2: Visualize an

User navigates to
Huffman Visualizer

v
User enters input text

v

User Clicks 'Visualize'

v

Frontend sends text to
Backend

v

Backend's Algorithm Engine
generates visualization
steps

Frontend displays

interactive
visualization player

The User Journey

01 02

Step 1: Landing & Selection Step 2: Input

User chooses a mode: analyze, visualize, or view User inputs code or query for processing.

example.

03 04

Step 3: Processing Step 4: Output

Backend and Al service analyze input and generate

insights. explanations.

Frontend displays results with visualizations and

Inside the Backend

APl Routes
01

Manage all HTTP requests

Examples: /api/analyze, /api/algorithms/hoffman

Controllers
02

Includes logic in files like visualizationController.js and algorithms.js

Services
03

Factory-based LLM service

CodeAnalyzer service for handling parsing

Parsers & Models
04

cParser.js identifies structures

Algorithm.js creates execution state

14 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

Ul & Visualization Showcase

01

02

03

04

Code Input

Component: CodeAnalyzer

User-friendly editor for code input

Al Analysis Results

Displays complexity metrics and real-world metaphors

Live Visualization

Animated rendering of algorithm steps (e.g. Huffman tree)

Interactive Controls

Playback, step navigation, and parameter tweaking

15 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

Challenges & Key Learnings

01

Challenges

Building a generic visualization engine
Prompt engineering for Al

Frontend state management

16 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

02

Key Learnings

Power and flexibility of LLMs
Full-stack integration skills
Significance of user experience design

Al derived developing

The Road Ahead: Future Work

Algorithm Support

Al generated games for algorithms

Debugging visualization

Al Features
02
Add Al-generated test cases
Introduce a code improvement advisor
Platform Features
03

Implement user account system

Enable collaboration features

17 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

Conclusion

Project Summary

01
CodeViz demonstrates how Al can revolutionize algorithm education with visual,
hands-on learning.
Outcomes
02
Built a full-stack app with LLM integration
Developed a custom step-wise algorithm engine
Final Thoughts
03

Al tools like CodeViz are paving the way for the future of technical education.
education.

18 / CodeViz: An Al-Powered Platform for Algorithm Visualization and Understanding

CodeViz

An Al-Powered Platform for Algorithm
Visualization and Understanding

Shafir Cohen & Omer Efron

	שקופית 1
	שקופית 2
	שקופית 3
	שקופית 4
	שקופית 5
	שקופית 6
	שקופית 7
	שקופית 8
	שקופית 9
	שקופית 10
	שקופית 11
	שקופית 12
	שקופית 13
	שקופית 14
	שקופית 15
	שקופית 16
	שקופית 17
	שקופית 18
	שקופית 19

